
MATH 245 S21, Exam 2 Solutions

2. Prove that ∀x ∈ R,∃!y ∈ R, (x = bxc+ y) ∧ (0 ≤ y < 1).

EXISTENCE: Let x ∈ R be arbitrary, and choose y = x− bxc. This choice of y forces x = bxc+ y. Now
(by definition of floor), bxc ≤ x < bxc + 1. Subtracting bxc throughout gives 0 ≤ x − bxc < 1, hence
0 ≤ y < 1. By addition, (x = bxc+ y) ∧ (0 ≤ y < 1).
UNIQUENESS: Let x ∈ R be arbitrary, and suppose that there are y, z ∈ R with x = bxc + y, 0 ≤ y <
1, x = bxc+ z, 0 ≤ z < 1. We combine the first and third of these to get bxc+ y = bxc+ z. Subtracting
bxc from both sides, we get y = z.

3. Use the division algorithm to prove that ∀n ∈ N, n2+9n+20
2 ∈ Z.

Let n ∈ N be arbitrary. We apply the DA to n, 2 to get unique integers q, r with n = 2q+r and 0 ≤ r < 2.
The conditions on r allow only two possibilities: r = 0, 1.

Case r = 0: Now n = 2q, so we substitute and get n2+9n+20
2 = (2q)2+9(2q)+20

2 = 4q2+18q+20
2 = 2q2+9q+10 ∈

Z.
Case r = 1: Now n = 2q+1, so we substitute and get n2+9n+20

2 = (2q+1)2+9(2q+1)+20
2 = 4q2+4q+1+18q+9+20

2 =
4q2+22q+30

2 = 2q2 + 11q + 15 ∈ Z.

In both cases, n2+9n+20
2 ∈ Z.

4. Use (some form of) mathematical induction to prove that ∀n ∈ N, n2+9n+20
2 ∈ Z.

We can use vanilla induction. Base case, n = 1, we have n2+9n+20
2 = 1+9+20

2 = 15 ∈ Z.

Inductive case: Let n ∈ N be arbitrary and assume that n2+9n+20
2 ∈ Z. Now, n+5 is also an integer (found

via a side calculation), hence the sum is also an integer. That is, n2+9n+20
2 +n+ 5 = n2+9n+20

2 + 2n+10
20 =

n2+11n+30
2 = (n+1)2+9(n+1)+20

2 ∈ Z.

5. Solve the recurrence given by a0 = 2, a1 = 3, an = −4an−1 − 4an−2 (n ≥ 2).

The characteristic polynomial is r2 + 4r + 4 = (r + 2)2. Hence there is a double root of r = −2,
and the general solution is an = A(−2)n + Bn(−2)n. We now use the initial conditions 2 = a0 =
A(−2)0 + B × 0 × (−2)0 = A, and 3 = a1 = A(−2)1 + B × 1 × (−2)1 = −2A − 2B. We now solve
the 2 × 2 linear system {2 = A, 3 = −2A − 2B} to get A = 2, B = − 7

2 . Hence the specific solution is
an = 2(−2)n − 7

2n(−2)n = −(−2)n+1 + 7n(−2)n−1.

WARNING: One must be careful with the laws of exponents to simplify at the end.

6. Let an = n1.9 + n2.1. Prove or disprove that an = O(n2).

The statement is false. To disprove, let M ∈ R and n0 ∈ N be arbitrary. Choose n = 1 + max(n0, dM10e)
[We need a specific choice of n, found via a side calculation.] Note that n ∈ N and n ≥ n0, so n is in
the correct domain. Note also that n > M10. Taking the tenth root gives n0.1 > |M |. Multiplying by
n2 gives n2.1 > |M |n2. Now |n1.9 + n2.1| = n1.9 + n2.1 > n2.1 > |M |n2 = |M ||n2| ≥ M |n2|. Hence,
|n1.9 + n2.1| > M |n2|.

7. Let Fn denote the Fibonacci numbers. Prove that ∀n ∈ N0, F 2
2n+1 − F2n+2F2n = 1.

We must use shifted induction, since the domain is N0. Strong induction is not needed, but you may use
it if you like. Base case: n = 0, F0 = 0, F1 = 1, F2 = 1, and we calculate F 2

1 − F2F0 = 12 − 1× 0 = 1.
Inductive case: Let n ∈ N0 be arbitrary, and assume that F 2

2n+1 − F2n+2F2n = 1. We now calculate
with x = F 2

2n+3 − F2n+4F2n+2, trying to get to 1. We substitute F2n+3 = F2n+2 + F2n+1 and F2n+4 =
F2n+3+F2n+2, getting x = (F2n+2+F2n+1)2−(F2n+3+F2n+2)F2n+2 = 2F2n+2F2n+1+F 2

2n+1−F2n+3F2n+2.
We again substitute F2n+3 = F2n+2 +F2n+1, getting x = 2F2n+2F2n+1 +F 2

2n+1− (F2n+2 +F2n+1)F2n+2 =
F2n+2F2n+1 +F 2

2n+1−F 2
2n+2 = F2n+2(F2n+1 − F2n+2︸ ︷︷ ︸)+F 2

2n+1. Lastly, we rearrange F2n+2 = F2n+1 +F2n

into −F2n = F2n+1 − F2n+2, and substitute as marked, getting x = F2n+2(−F2n) + F 2
2n+1. Now, by the

inductive hypothesis, x = 1, so F 2
2n+3 − F2n+4F2n+2 = x = 1.

Note: This is a special case of Cassini’s identity, as proved in the homework. However, you may not use
results from homework problems on exams.


