MATH 245 S21, Exam 2 Solutions

2. Prove that $\forall x \in \mathbb{R}, \exists!y \in \mathbb{R},(x=\lfloor x\rfloor+y) \wedge(0 \leq y<1)$.

EXISTENCE: Let $x \in \mathbb{R}$ be arbitrary, and choose $y=x-\lfloor x\rfloor$. This choice of y forces $x=\lfloor x\rfloor+y$. Now (by definition of floor), $\lfloor x\rfloor \leq x<\lfloor x\rfloor+1$. Subtracting $\lfloor x\rfloor$ throughout gives $0 \leq x-\lfloor x\rfloor<1$, hence $0 \leq y<1$. By addition, $(x=\lfloor x\rfloor+y) \wedge(0 \leq y<1)$.
UNIQUENESS: Let $x \in \mathbb{R}$ be arbitrary, and suppose that there are $y, z \in \mathbb{R}$ with $x=\lfloor x\rfloor+y, 0 \leq y<$ $1, x=\lfloor x\rfloor+z, 0 \leq z<1$. We combine the first and third of these to get $\lfloor x\rfloor+y=\lfloor x\rfloor+z$. Subtracting $\lfloor x\rfloor$ from both sides, we get $y=z$.
3. Use the division algorithm to prove that $\forall n \in \mathbb{N}, \frac{n^{2}+9 n+20}{2} \in \mathbb{Z}$.

Let $n \in \mathbb{N}$ be arbitrary. We apply the DA to $n, 2$ to get unique integers q, r with $n=2 q+r$ and $0 \leq r<2$. The conditions on r allow only two possibilities: $r=0,1$.
Case $r=0$: Now $n=2 q$, so we substitute and get $\frac{n^{2}+9 n+20}{2}=\frac{(2 q)^{2}+9(2 q)+20}{2}=\frac{4 q^{2}+18 q+20}{2}=2 q^{2}+9 q+10 \in$ \mathbb{Z}.
Case $r=1$: Now $n=2 q+1$, so we substitute and get $\frac{n^{2}+9 n+20}{2}=\frac{(2 q+1)^{2}+9(2 q+1)+20}{2}=\frac{4 q^{2}+4 q+1+18 q+9+20}{2}=$ $\frac{4 q^{2}+22 q+30}{2}=2 q^{2}+11 q+15 \in \mathbb{Z}$.
In both cases, $\frac{n^{2}+9 n+20}{2} \in \mathbb{Z}$.
4. Use (some form of) mathematical induction to prove that $\forall n \in \mathbb{N}, \frac{n^{2}+9 n+20}{2} \in \mathbb{Z}$.

We can use vanilla induction. Base case, $n=1$, we have $\frac{n^{2}+9 n+20}{2}=\frac{1+9+20}{2}=15 \in \mathbb{Z}$.
Inductive case: Let $n \in \mathbb{N}$ be arbitrary and assume that $\frac{n^{2}+9 n+20}{2} \in \mathbb{Z}$. Now, $n+5$ is also an integer (found via a side calculation), hence the sum is also an integer. That is, $\frac{n^{2}+9 n+20}{2}+n+5=\frac{n^{2}+9 n+20}{2}+\frac{2 n+10}{20}=$ $\frac{n^{2}+11 n+30}{2}=\frac{(n+1)^{2}+9(n+1)+20}{2} \in \mathbb{Z}$.
5. Solve the recurrence given by $a_{0}=2, a_{1}=3, a_{n}=-4 a_{n-1}-4 a_{n-2}(n \geq 2)$.

The characteristic polynomial is $r^{2}+4 r+4=(r+2)^{2}$. Hence there is a double root of $r=-2$, and the general solution is $a_{n}=A(-2)^{n}+B n(-2)^{n}$. We now use the initial conditions $2=a_{0}=$ $A(-2)^{0}+B \times 0 \times(-2)^{0}=A$, and $3=a_{1}=A(-2)^{1}+B \times 1 \times(-2)^{1}=-2 A-2 B$. We now solve the 2×2 linear system $\{2=A, 3=-2 A-2 B\}$ to get $A=2, B=-\frac{7}{2}$. Hence the specific solution is $a_{n}=2(-2)^{n}-\frac{7}{2} n(-2)^{n}=-(-2)^{n+1}+7 n(-2)^{n-1}$.
WARNING: One must be careful with the laws of exponents to simplify at the end.
6. Let $a_{n}=n^{1.9}+n^{2.1}$. Prove or disprove that $a_{n}=O\left(n^{2}\right)$.

The statement is false. To disprove, let $M \in \mathbb{R}$ and $n_{0} \in \mathbb{N}$ be arbitrary. Choose $n=1+\max \left(n_{0},\left\lceil M^{10}\right\rceil\right)$ [We need a specific choice of n, found via a side calculation.] Note that $n \in \mathbb{N}$ and $n \geq n_{0}$, so n is in the correct domain. Note also that $n>M^{10}$. Taking the tenth root gives $n^{0.1}>|M|$. Multiplying by n^{2} gives $n^{2.1}>|M| n^{2}$. Now $\left|n^{1.9}+n^{2.1}\right|=n^{1.9}+n^{2.1}>n^{2.1}>|M| n^{2}=|M|\left|n^{2}\right| \geq M\left|n^{2}\right|$. Hence, $\left|n^{1.9}+n^{2.1}\right|>M\left|n^{2}\right|$.
7. Let F_{n} denote the Fibonacci numbers. Prove that $\forall n \in \mathbb{N}_{0}, F_{2 n+1}^{2}-F_{2 n+2} F_{2 n}=1$.

We must use shifted induction, since the domain is \mathbb{N}_{0}. Strong induction is not needed, but you may use it if you like. Base case: $n=0, F_{0}=0, F_{1}=1, F_{2}=1$, and we calculate $F_{1}^{2}-F_{2} F_{0}=1^{2}-1 \times 0=1$.
Inductive case: Let $n \in \mathbb{N}_{0}$ be arbitrary, and assume that $F_{2 n+1}^{2}-F_{2 n+2} F_{2 n}=1$. We now calculate with $x=F_{2 n+3}^{2}-F_{2 n+4} F_{2 n+2}$, trying to get to 1 . We substitute $F_{2 n+3}=F_{2 n+2}+F_{2 n+1}$ and $F_{2 n+4}=$ $F_{2 n+3}+F_{2 n+2}$, getting $x=\left(F_{2 n+2}+F_{2 n+1}\right)^{2}-\left(F_{2 n+3}+F_{2 n+2}\right) F_{2 n+2}=2 F_{2 n+2} F_{2 n+1}+F_{2 n+1}^{2}-F_{2 n+3} F_{2 n+2}$. We again substitute $F_{2 n+3}=F_{2 n+2}+F_{2 n+1}$, getting $x=2 F_{2 n+2} F_{2 n+1}+F_{2 n+1}^{2}-\left(F_{2 n+2}+F_{2 n+1}\right) F_{2 n+2}=$ $F_{2 n+2} F_{2 n+1}+F_{2 n+1}^{2}-F_{2 n+2}^{2}=F_{2 n+2}(\underbrace{F_{2 n+1}-F_{2 n+2}})+F_{2 n+1}^{2}$. Lastly, we rearrange $F_{2 n+2}=F_{2 n+1}+F_{2 n}$ into $-F_{2 n}=F_{2 n+1}-F_{2 n+2}$, and substitute as marked, getting $x=F_{2 n+2}\left(-F_{2 n}\right)+F_{2 n+1}^{2}$. Now, by the inductive hypothesis, $x=1$, so $F_{2 n+3}^{2}-F_{2 n+4} F_{2 n+2}=x=1$.
Note: This is a special case of Cassini's identity, as proved in the homework. However, you may not use results from homework problems on exams.

